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Dynamics of Kinks: Nucleation, Diffusion, and Annihilation
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We investigate the nucleation, annihilation, and dynamics of kinks in a classical �1 1 1�-dimensional
f4 field theory at finite temperature. From large scale Langevin simulations, we establish that the nuclea-
tion rate is proportional to the square of the equilibrium density of kinks. We identify two annihilation
time scales: one due to kink-antikink pair recombination after nucleation, the other from nonrecombinant
annihilation. We introduce a mesoscopic model of diffusing kinks based on “paired” and “survivor” kinks
and antikinks. Analytical predictions for the dynamical time scales, as well as the corresponding length
scales, are in good agreement with the simulations.

PACS numbers: 05.20.–y, 11.10.–z, 63.70.+h, 64.60.Cn
Many extended systems have localized coherent struc-
tures that maintain their identity as they move, interact, and
are buffeted by local fluctuations. The statistical mechan-
ics of these objects has diverse applications, e.g., in con-
densed matter physics [1], biology [2], and particle physics
[3]. The model to be studied here is a kink-bearing f4 field
theory in �1 1 1� dimensions, popular because its proper-
ties are representative of those found in many applications.
Static equilibrium quantities of this theory, such as the kink
density and spatial correlation functions, are now well un-
derstood and recent work has shown that theory and simu-
lations are in good agreement [4–6]. However, dynamical
processes, both close to and far out of equilibrium, are
much less well understood. Questions include: What is
the nucleation rate of kink-antikink pairs? How is an equi-
librium population maintained? How do these dynamical
processes depend on the temperature and damping? These
questions, among others, are the subject of this Letter.

We introduce and analyze below a simple model of kink
diffusion and annihilation that predicts the nucleation rate
and provides a picture of the physical situation, including
the existence of multiple time and length scales. We also
carry out high resolution numerical simulations. As one
consequence of our work, we are able to settle a recent
controversy as to whether the nucleation rate of kinks in
an overdamped system is proportional to exp�22Ekb� [7]
or exp�23Ekb� [8] in favor of the first result (Ek is the
kink energy and b � 1�kBT).

We consider the dynamics of the f4 field obeying the
following dimensionless Langevin equation [4]:

≠2
ttf � ≠2

xxf 1 f�1 2 f2� 2 h≠tf 1 j�x, t� , (1)

with the fluctuation-dissipation relation enforced by
�j�x, t�j�x0, t0�� � 2hb21d�x 2 x0�d�t 2 t0�. We per-
form simulations on lattices typically of 106 sites, using
a finite difference algorithm that has second-order con-
vergence to the continuum [6]. Typical values of the grid
spacing and time step are Dx � 0.4 and Dt � 0.01.

At zero temperature, the static kink solution centered at
x � x0 is fk�x� � k�x 2 x0� where k�x� � tanh�x�

p
2 �;
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the corresponding antikink solution is fa�x� � 2k�x 2

x0�. Because there are only two potential minima, kinks
alternate with antikinks on the spatial lattice. Imposing pe-
riodic boundary conditions constrains the number of kinks
and antikinks to be equal. During the time evolution, we
identify kinks and antikinks individually and follow the
“lifeline” of each kink or antikink (Fig. 1).

Equilibrium properties of one-dimensional systems,
such as the free energy density and the correlation
function �f�0�f�x��, can be calculated using the transfer
integral method [9]. The calculation is exact, although
one typically must evaluate eigenvalues of the resulting
Schrödinger equation numerically. When the on-site
potential has the double-well form, as is the case here,
one part of the free energy density at low temperature
can be interpreted as due to kinks, forming a dilute gas
with density [9]: rk ~

p
Ekb exp�2Ekb�. This WKB

approximation is consistent with recent simulations at
b . 6, where unambiguous identification of kinks is
possible [4].

FIG. 1. Time lines of kinks and antikinks: A small space-time
portion of one numerical solution is shown. Many recombinant
nucleation-annihilation events are barely visible, forming small
closed loops. b � 7, h � 1.
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An equilibrium density of kinks is maintained by a dy-
namical balance of nucleation and annihilation of kink-
antikink pairs (Fig. 1). The dependence of the nucleation
rate G on temperature and damping, however, is not di-
rectly calculable from the transfer integral; nor are un-
ambiguous results for symmetric potentials available from
saddle-point calculations [10]. While analogy with the
Kramers’ problem suggests G ~ exp�22bEk� [11], the re-
lationship G ~ exp�23bEk� has also been suggested [8].
Our direct counting of nucleation events establishes that
their rate is proportional to the square of the equilibrium
density, that is G ~ exp�22bEk� (Fig. 2). Below we show
how this relation can be understood from a mesoscopic
model of diffusing kinks with paired nucleation.

At equilibrium, the nucleation rate is related to the mean
kink lifetime t by rk � Gt. Previous attempts to evaluate
G numerically [12,13] have proceeded by counting the
number of kinks nk�t� and assuming exponential decay
of �nk�t 1 t�nk�t��. Unfortunately this approach provides
no information on the underlying processes, and yields
incorrect results if kinks are not properly identified on the
lattice. In particular, results that appeared to support G ~

exp�23bEk� were performed at temperatures too high for
accurate computation of �nk�t 1 t�nk�t�� [12].

Because we identify individual nucleation events and
follow individual kink lifelines, we can distinguish “paired”
kinks (whose partner antikink is still alive) from “survivor”
kinks (whose partner has been killed). We also distinguish
and measure the contributions to the annihilation rate from
the recombinant and various nonrecombinant mechanisms
(Fig. 3). The most frequent annihilation event is recombi-
nation of a recently nucleated pair (designated I in Fig. 3)
[7]. However, the survivor kinks that remain after a nonre-
combinant annihilation event (II or III) have a longer mean

FIG. 2. Nucleation rate, measured from numerical solution of
(1) with tracking of time lines. The rate G of production per unit
length per unit time of kink-antikink pairs is shown versus b for
three values of h: h � 0.2 (triangles), h � 1 (filled circles),
and h � 5 (diamonds). The solid line is G � r

2
k and the dashed

line is the best fit to G � ar
3
k for h � 1.
lifetime; the two types of kinks are present in roughly equal
proportion.

At finite temperature, the mean-squared displacement
of an isolated kink is given by �X2

t � � 2Dt. The diffu-
sivity D can be estimated by using the zero-temperature
kink as an ansatz in the equation of motion (1), yielding
D � �Ekbh�21 [14], where Ek �

p
8�9 for a static kink.

Corrections to D, arising because of fluctuations in the
kink shape, are proportional to b22 and subdominant in
the temperature range considered here.

Our numerical observations, in particular, that kink-
antikink collisions at moderate to large damping always
result in annihilation, motivate us to introduce the follow-
ing mesoscopic model of kink dynamics: (i) kink-antikink
pairs are nucleated at random times and positions with
initial separation b ø r

21
k ; (ii) once born, kinks and an-

tikinks diffuse independently with diffusivity D; (iii) kinks
and antikinks annihilate on collision. The separation be-
tween a kink and its partner performs Brownian motion
with diffusivity 2D. Thus, if only recombinate annihilation
(I in Fig. 3) were allowed, the time t0 between nucleation
and annihilation would have the density d�dtP �t0 , t� �
bt23�2�8pD�21�2 exp�2 b2

8Dt � [15].
To analyze our model, we use the following approxi-

mation for nonrecombinant annihilation: as long as both
members of a pair are alive, there is a constant probabil-
ity m per unit time of a member being struck and “killed”
by an outsider, i.e., of an event II or III. Thus, to each
pair we assign a killing time tm, distributed according

x

t

FIG. 3. The four kink-antikink annihilation processes. I: Re-
combination of a paired kink and antikink. II: Annihilation
of a survivor with a paired kink/antikink. III: Annihilation of
a kink and an antikink from two neighboring nucleation sites
(producing a survivor kink and antikink). IV: Annihilation of
two survivors.
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to P �tm . t� � exp�2mt�. Nonrecombinant annihilation
happens with probability P �tm , t0� � 1 2 exp�2bn�,
where n2 �

m

2D [16,17]. The killing rate m depends on
the density of kinks; we estimate it as follows. A new-
born pair finds itself in a domain between an existing kink
and antikink of typical length 1��2rk�. The mean time
for a diffusing particle to exit the region is proportional to
�2Dr

2
k �21. Therefore, let

m � 2Da2r2
k . (2)

The value of the dimensionless factor was obtained from
numerical measurements of length and time scales (see
Figs. 4 and 6 below): we estimate a � 8.

Let R�t� �
d
dt P �t0 , t j t0 , tm�. Then

R�t� � N�b� exp

µ
2

b2

8Dt

∂
t23�2 exp�2mt� , (3)

where N�b� � b�8pD�21�2 exp�nb�. In Fig. 4 we plot
(3) and a histogram of values of t0 obtained from a large
numerical solution of (1). The behavior R�t� ~ t23�2 is
characteristic of Brownian excursions [15].

Our mesoscopic model has two time scales [17]:

t0 � �t0 j t0 , tm� �
b

2
p

mD
, (4)

tm � �tm j tm , t0� �
1
m

µ
1 2

nb
2

1
enb 2 1

∂
. (5)

The mean recombination time (4) depends on b; in contrast
tm has a nonzero limit for nb ! 0: tm ! 1��2m�. With
the approximation that a survivor kink/antikink has the
same probability per unit time, m, of collision and death,
the mean lifetime of a kink or antikink is given by

t � t0e2nb 1 tm�1 2 e2nb� 1
1

2m
�1 2 e2nb� . (6)

FIG. 4. Recombination time density. Only recombinant histo-
ries (I in Fig. 3) are counted. The solid line is (3). The histogram
is from a simulation of (1). b � 6, h � 1.
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As rb ! 0, t ! �3�2�b�2mD�21�2 � �3�4�b�aDr�21.
In the same limit, combining (2) and (6) yields the predic-
tion that the nucleation rate is proportional to the square
of the equilibrium density:

G � rk�t �
4

3b
Dar2

k . (7)

The relation G ~ r
2
k is also found in the discrete-space

Ising model [18]. In contrast, the nucleation rate is propor-
tional to r

3
k in systems where nucleation does not occur in

pairs [18,19]. The latter scaling was incorrectly predicted
for the f4 system [8], from an estimate of the annihilation
rate that does not take into account paired nucleation. (In
the f4 system one does, however, find that the rate of
survivor-survivor annihilation events—IV in Fig. 3—is
proportional to r

3
k .) In the f4 stochastic partial differential

equation, the parameters D, G, and b have in general a
weak (nonexponential) temperature dependence. The
length scale b is of the same order as the width of an
isolated kink.

In Fig. 5 we plot the measured nucleation rate versus
the damping coefficient at fixed temperature. The nuclea-
tion rate is proportional to h21 for h ¿ 1 [in agreement
with (7)] and appears to plateau for h ! 0. At low damp-
ing, however, direct measurement of the nucleation rate is
problematic because kink-antikink collisions may result in
single or multiple bounces rather than immediate annihila-
tion [20].

We now turn to the length scales in the system. A histo-
gram of distances between neighboring kinks and antikinks
is well approximated by an exponential with character-
istic length �2rk�21. This simple form results from the
cancellation of the tendency of paired kinks to be closer
together than �2rk�21 with the opposite tendency of sur-
vivor kinks. In Fig. 6 we plot f�x� � �number of occur-
rences of separation [ �x, x 1 dx����Ldx�. We also
construct the histogram for the separations of only paired
kinks and antikinks. The dashed curve is the probability

FIG. 5. Nucleation rate versus damping for b � 6. The
dashed line has a slope of 1�h.
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FIG. 6. Kink-antikink spacing. In the upper part of the
plot, a histogram of all next-neighbor spacings is plotted with
�2rk�2 exp�22rkx� (solid line). The lower part of the plot is
a histogram of kink-antikink spacings only from paired kinks;
the dashed line is �2rk�2 exp�28rkx�. b � 6, h � 1.

of being at x, averaged over the lifetime, for a Brownian
motion killed at x � 0 and at rate m [16]:

l�x� � N exp�2nx� � N exp�2arkx� . (8)

The classification of kinks into paired kinks and sur-
vivors, with the approximation that kinks have a constant
probability (2) per unit time of nonrecombinant annihila-
tion, allows us to construct a macroscopic rate theory for
the two densities np�t� (paired kinks) and ns�t� (survivor
kinks). The equation for np�t� has a positive term due to
nucleation and a negative term inversely proportional to the
lifetime of pairs, (4). The terms in the equation for ns�t�
correspond to processes III and IV in Fig. 3. Note that
process II does not change the number of survivor kinks.
We obtain

�np � G 2 2b21aD�ns 1 np�np ,

�ns � Da2�ns 1 np�2�np 2 2ns� .
(9)

The steady state solution of (9) gives the relationship (7)
between G and the equilibrium kink density. Nonequilib-
rium dynamics are also correctly described: if G � 0, the
paired density quickly decays and, for late times, �ns ~ n3

s ,
in agreement with an exact result for the survival proba-
bility in the diffusion-limited reaction A 1 A ! 0 [21].
While not exact, (9) illustrate that at least two coupled
equations are necessary to capture the two time scales in
the dynamics: no single rate equation can suffice.

We have benefited from discussions with Kalvis Jan-
sons, Eli Ben-Naim, and Vincent Hakim. Computations
were performed at the National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National
Laboratory.
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